Yongjie Hu

Yongjie Hu


37-130, Eng IV

Email: yhu@seas.ucla.edu
Phone: (310) 825-3583


Heat transfer and electron transport in nanostructures, interfaces & packaging. Thermal, electronic, optoelectronic, thermoelectric devices and systems. Energy conversion, storage and thermal management. Ultrafast optical spectroscopy and high-frequency electronics. Nanomaterials design, processing and manufacturing.
  1. J.S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, “Experimental observation of high thermal conductivity in boron arsenide,” Science 361, 575 (2018).
  2. M. Li, J.S. Kang, and Y. Hu, “Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method,” Review of Scientific Instruments 89, 084901 (2018).
  3. J.S. Kang, H. Wu; and Y. Hu, “Thermal properties and phonon spectral Mapping of boron phosphide through nanoscale ballistic transport for high thermal conductivity applications,” Nano Letters 17, 7507 (2017).
  4. J.S. Kang, M. Ke and Y. Hu, “Ionic intercalation in 2D van der Waals materials: in-situ electrochemical control of the anisotropic thermal conductivity of black phosphorus,” Nano Letters 17, 1431(2017).
  5. Z. Lin, C. Hollar, J.S. Kang, A. Yin, Y. Wang, H. Shiu, Y. Huang, Y. Hu, Y. Zhang, and X. Duan, “A solution processable high-performance thermoelectric copper selenide thin film,” Advanced Materials 29, 1606662:1-6 (2017).
  6. L. Zeng, K.C. Collins, Y. Hu, M.N. Luckyanova, A.A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K.A. Nelson, and G. Chen, “Measuring phonon mean free path distributions by probing quasiballsitic phonon transport in grating nanostructures,” Scientific Reports 5, 17131 (2015).
  7. B. Lv, Y. Lan, X. Wang, Q. Zhang, Y. Hu, A. Jacobson, B. David, G. Chen, Z. Ren, C. Chu, “Experimental study of the proposed super-thermal-conductor: BAs,” Appl. Phys. Lett. 106, 074105 (2015).
  8. Y. Hu, L. Zeng, A. J. Minnich, M. S. Dresselhaus, and G. Chen, “Spectral mapping of thermal conductivity through nanoscale ballistic transport,” Nature Nanotechnology 10, 701 (2015).
  9. Y. Hu, F. Kuemmeth, C. Lieber and C. Marcus, “Hole spin relaxation in Ge–Si core–shell nanowire qubits,” Nature Nanotechnology 7, 47-50 (2012).
  10. H. Yan, H. Choe, S. Nam, Y. Hu, S. Das, J. Klemic, J. Ellenbogen and C. Lieber, “Programmable nanowire nanoprocessor, ” Nature 470, 240-244 (2011).
  11. P. Xie, Y. Hu, Y. Fang, J. Huang and C. Lieber, “Diameter-dependent dopant location in silicon and germanium nanowires,” Proc. Natl. Acad. Sci. USA, 106, 15254-15258 (2009).
  12. C. Wang, Y. Hu, C. Lieber and S. Sun, “Ultrathin Au nanowires and their transport properties,” J. Am. Chem. Soc. 130, 8902-8903 (2008).
  13. Y. Hu, J. Xiang, G. Liang, H. Yan and C. Lieber, “Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed,” Nano Letters 8, 925-930 (2008).
  14. Y. Hu, H. Churchill, D. Reilly, J. Xiang, C. Lieber and C. Marcus, “A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor,” Nature Nanotechnology 2, 622-625 (2007).
  15. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan and C. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441, 489-493 (2006).
  • Harvard University, 2012
  • Massachusetts Institute of Technology, 2014
  • 2020 Vernroy Makoto Watanabe Excellence in Research Award
  • 2019 ASME Bergles-Rohsenow Young Investigator Award in Heat Transfer
  • 2019 National Academy of Engineering (NAE) U.S. Frontiers of Engineering
  • 2019 Alfred P. Sloan Research Fellowship
  • 2018 UCLA Faculty Career Development Award
  • 2018 NSF CAREER Award
  • 2017 Air Force Young Investigator Award
  • 2017 American Chemical Society Doctoral New Investigator Award