Qibing Pei

Qibing Pei

PROFESSOR
MATERIALS SCIENCE AND ENGINEERING
MECHANICAL AND AEROSPACE ENGINEERING

3111 Engineering V

Email:
Phone: (310) 825-4217
Fax: (310) 206-7353

Websites

RESEARCH AND INTERESTS
Our Soft Materials Research Laboratory studies electroactive polymers and nanostructured hybrid materials. The research focuses on molecular synthesis and nanofabrication for the development of new polymers and nanostructures with desired electronic, photonic, and/or mechanical properties. The applications of these materials are many folds, including flexible electronics, artificial muscles, photovoltaics, wind energy generation, radiation detection and protection, and biologically-inspired systems to name a few. Current activities include:Artificial Muscles: These are based on dielectric elastomers exhibiting electrically-induced strains as high as 300%. The polymer transducers have such advantages as high energy and power densities, quietness, mechanical compliancy (for shock resistance and impedance matching), high efficiency, lightweight, and low cost. To improve the device performance and reliability, interpenetrating polymer networks are being studied as a new generation of electroelastomers. Fault tolerance is being introduced as a means to prolong operation lifetime. Our projects involve mechanical design, fabrication, and testing of polymer actuators and generators. Bistable electroactive polymer has been introduced for large-strain, rigid-to-rigid actuation. This material is being employed to fabricate Braille electronic readers.Flexible electronics: We are developing electronic devices that are flexible and stretchable. A key component is stretchable transparent electrodes based on composites of carbon nanotubes and silver nanowires. The composites electrodes have sheet resistance and transmission of visible light comparable to indium tin oxide coated on PET and glass. Polymer light emitting diodes and solar cells fabricated on the composite electrodes perform as well as or better than control devices on ITO/glass. Using the composite electrodes, we have demonstrated polymer LEDs wherein the active area is stretchable.Nanostructured hybrid materials: Composites of inorganic compounds and conjugated polymers are prepared with controlled nanostructures for photovoltaics or radiation detection. We synthesized CdS nanorod arrays by electrochemical self-assembly, and CdS thin coating by chemical bath deposition. High-Z nanoparticle polymer composites are studied for gamma and X-ray scintillation.Synthesis of conjugated polymers: The band gap, band edges (electron affinity and ionization potential), optical absorption, photoluminescence color and quantum efficiency, and carrier mobility can be modulated through the conjugated backbone or side chains, structural regularity, molecular weight, purity, and molecular ordering. We can thus tailor conjugated polymers for different applications such as light emitting diodes, solar cells, thin film transistors, and sensors. We fabricate semiconductor devices (LEDs, solar cells) using the selected polymers.
PUBLICATIONS
  • C. Murray, D. McCoul, E. Sollier, T. Ruggiero, X. Niu, Q. Pei, D. Di Carlo, “Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators”,  Microfluidics and Nanofluidics, 14(1), 345-358 (2013).

  • H. Stoyanov, P. Brochu, X. Niu, C. Lai, S. Yun and Q. Pei, “Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes,” RSC Advances, 3 (7), 2272 – 2278 (2013).

  • X. Niu, H. Stoyanov, W. Hu, R. Leo, P. Brochu, Q. Pei, “Synthesizing a New Dielectric Elastomer Exhibiting Large Actuation Strain and Suppressed Electromechanical Instability without Prestretching”, J. Polymer Science, Part B: Polymer Physics, 51, 197–206 (2013).

  • L. Li, J. Liu, Z. Yu, Q. Pei, “Efficient White Polymer Light-Emitting Diodes Employing a Silver Nanowire-Polymer Composite Electrode”, Phys. Chem. Chem. Phys., 14 (41), 14249 – 14254 (2012).

  • W. Hu, X. Niu, L. Li, S. Yun, Z. Yu, and Q. Pei, “Intrinsically stretchable transparent electrodes based on silver-nanowire–crosslinked-polyacrylate composites”, Nanotechnology 23, 344002 (2012).

  • H. Stoyanov, P. Brochu, X, Niu, E.D. Gaspera, Q. Pei, “Dielectric elastomer transducers with enhanced force output and work density”, Applied Physics Letters, 100, 262902 (2012).

  • S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, Q. Pei, “Compliant Silver Nanowire-Polymer Composite Electrodes for Bistable Large Strain Actuation”, Advanced Materials, 24, 1321-1327 (2012).

  • L. Li, Z. Yu, W. Hu, C.-H. Chang, Q. Chen and Q. Pei, “Efficient Flexible Phosphorescent Polymer Light-Emitting Diodes Based on Silver Nanowire-Polymer Composite Electrode”, Advanced Materials, 23(46), 5563–5567 (2011).

  • Z. Yu, L. Li, Q. Zhang, W. Hu, Q. Pei, “Silver Nanowire-Polymer Composite Electrodes for Efficient Polymer Solar Cells”,  Adv Mater. 23(38), 4453-4457 (2011).

  • Z. Yu, X. Niu, Z. Liu, Q. Pei, “Intrinsically Stretchable Polymer Light-Emitting Devices Using Carbon Nanotube-Polymer Composite Electrodes”, Adv. Mater. 23 (34), 2011, 3989–3994 (2011).

  • J. Liu, L. Li, C. Gong, Z. Yu, Q. Pei, “An Ambipolar Poly(Meta-Phenylene) Copolymer with High Triplet Energy to Host Blue and Green Electrophosphorescence”, J. Mater. Chem., 21, 9772-9777 (2011).

  • L. Li, J. Liu, Z. Yu, and Q. Pei, “Highly Efficient Blue Phosphorescent Polymer Light-Emitting Diodes by Using Interfacial Modification”, Appl. Phys. Lett. 98 (20), Article No: 201110 (May 2011).

  • L. Li, J. Liu, Z. Yu, and Q. Pei, “Highly Efficient Blue Phosphorescent Polymer Light-Emitting Diodes by Using Interfacial Modification”, Appl. Phys. Lett. 98 (20), Article No: 201110 (2011).

  • J. Liu, L. Li, Q. Pei, “Conjugated Polymer as Host for High Efficiency Blue and White Electrophosphorescence”, Macromolecules  44 (8),  2451-2456 (2011).

  • Z. Yu, M. Wang, G. Lei, J. Liu, L. Li, Q. Pei, “Stabilizing the Dynamic p-i-n Junction in Polymer Light-Emitting Electrochemical Cells”, J. Phys. Chem. Lett. 2, 367-372 (2011).

  • Z. Yu, Q. Zhang , L. Li , Q. Chen , X. Niu , J. Liu , and Q. Pei, “Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes,” Adv Mater. 23, 664-668 (2011).

  • J. Liu, Q. Pei, “Poly(m-phenylene): Conjugated Polymer Host with High Triplet Energy for Efficient Blue Electrophosphorescence,” Macromolecules, 43, 9608-9612 (2010).

  • J. Liu, Q. Pei, “Electrophosphorescent Polymers for High-Efficiency Light-Emitting Diodes,” Current Org. Chem. 14, 2133-2144 (2010).

  • W. Yuan, H. Li, P. Brochu, X. Niu and Q. Pei, “Fault-tolerant silicone dielectric elastomers”, International J. Smart and Nano Materials, Vol. 1, No. 1, pp 40–52 (2010).

  • H. Zhang, L. Düring, G. Kovacs, W. Yuan, X. Niu, Q. Pei, “Interpenetrating polymer networks based on acrylic elastomers and plasticizers with improved actuation temperature range”, Polymer International, 59, 384-390 (2010.

  • P. Brochu, Q. Pei, “Advances in Dielectric Elastomers for Actuators and Artificial Muscles,” Macromol. Rapid Commun. 2010, 31, 10-36 (2010).

  • Z. Yu, W. Yuan, P. Brochu, B. Chen, Z. Liu, Q. Pei, “Large-strain, Rigid-to-rigid Deformation of Bistable Electroactive Polymers”, Appl. Phys. Lett. 95, 192904 (2009).

  • Z. Yu, L. Hu, Z. Liu, M. Sun, M. Wang, G. Grüner, Q. Pei, “Fully Bendable Polymer Light Emitting Devices with Carbon Nanotubes as Cathode and Anode,” Appl. Phys. Lett. Vol. 95, #203304, pp 1-3 (2009).

  • W. Yuan, P. Brochu, S.M. Ha, Q. Pei, “Dielectric Oil Coated Single-walled Carbon Nanotube Electrodes for Stable, Large-strain Actuation with Dielectric Elastomers”, Sensors and Actuators A: Physical, Vol. 155, pp 278–284 (2009).


UCLA Engineering

×