Tyson Condie

Tyson Condie

ASSISTANT PROFESSOR

Symantec Chair in Computer Science

3531F Boelter Hall

Email: tcondie@cs.ucla.edu
Phone: (310) 825-4740
Fax: (310) 825-7578

Websites

Open the bio in a new tab

Tyson Condie is an Assistant Professor at UCLA. He received his Ph.D. from Berkeley. Prior to joining UCLA, he worked at Microsoft as a Principal Scientist in the Cloud and Information Services Lab, and as a Research Scientist at Yahoo! Research. His research focus is in large-scale data analytics, distributed systems, and declarative language design and implementation. His current work involves building a system software stack for Big Data Analytics on cloud computing platforms.
RESEARCH AND INTERESTS
REEF: Retainable Evaluator Execution Framework The REEF project is a collaboration with the Microsoft Cloud and Information Services Lab on building a framework for simplifying and unifying the lower layers of Big Data system stacks. REEF forms a layer above resource managers (like YARN, Mesos, Corona) and below Big Data applications (like Hadoop MapReduce, Hyracks, GraphLab, Pregel). Special consideration is given to mixed-framework, graph computations and machine learning applications. DeML: Declarative Machine Learning The DeML project is a collaboration with Carlo Zaniolo (UCLA) and Neoklis Polyzotis (UCSC). We explore a different approach to the development of ML tools; inspired by the principle of declarative data management. The DeML system that we are building enables the authoring and execution of ML tools in a high-level declarative language that is reminiscent to Datalog. Using DeML, a tool developer implements an ML algorithm as a declarative query over the training data. A data scientist can then invoke the query on the specific data set with any required parameters. DeML then is responsible for transparently optimizing the execution of the query over a compute platform (e.g., Amazon EC2 or SQL Azure), taking into account he characteristics of the algorithm, statistics of the data, and the available computational resources.
NOTABLE PUBLICATIONS
Research supported by NSF, NIH, Okawa Foundation, IBM, Intel, Symantec, UC Faculty Development Award, and University of California President’s Research Catalyst Award. 2016
  • M. A. Gulzar, X. Han, M. Interlandi, S. Mardani, S. D. Tetali, T. Condie, T. D. Millstein, and M. Kim, “Interactive debugging for big data analytics,” in 8th USENIX workshop on hot topics in cloud computing, hotcloud 2016, denver, co, usa, june 20-21, 2016., 2016.
  • [DOI] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie, T. D. Millstein, and M. Kim, “Bigdebug: debugging primitives for interactive big data processing in spark,” in Proceedings of the 38th international conference on software engineering, ICSE 2016, austin, tx, usa, may 14-22, 2016, 2016, pp. 784-795.
  • [DOI] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo, “Big data analytics with datalog queries on spark,” in Proceedings of the 2016 international conference on management of data, SIGMOD conference 2016, san francisco, ca, usa, june 26 – july 01, 2016, 2016, pp. 1135-1149.
2015
  • M. Weimer, Y. Chen, B. -, T. Condie, C. Curino, C. Douglas, Y. Lee, T. Majestro, D. Malkhi, S. Matusevych, B. Myers, S. Narayanamurthy, R. Ramakrishnan, S. Rao, R. Sears, B. Sezgin, and J. Wang, “REEF: retainable evaluator execution framework,” in Proceedings of the 2015 ACM SIGMOD international conference on management of data, melbourne, victoria, australia, may 31 – june 4, 2015, 2015, pp. 1343-1355.
  • M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim, T. Millstein, and T. Condie, “Titian: data provenance support in spark,” Proc. vldb endow., vol. 9, iss. 3, pp. 216-227, 2015.
2014
  • Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix: big(ger) graph analytics on a dataflow engine,” Proc. vldb endow., vol. 8, iss. 2, pp. 161-172, 2014.
2013
  • J. Rosen, N. Polyzotis, V. R. Borkar, Y. Bu, M. J. Carey, M. Weimer, T. Condie, and R. Ramakrishnan, “Iterative mapreduce for large scale machine learning,” Corr, vol. abs/1303.3517, 2013.
  • B. Chun, T. Condie, C. Curino, R. Ramakrishnan, R. Sears, and M. Weimer, “Reef: retainable evaluator execution framework,” Pvldb, vol. 6, iss. 12, pp. 1370-1373, 2013.
2012
  • V. R. Borkar, Y. Bu, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie, M. Weimer, and R. Ramakrishnan, “Declarative systems for large-scale machine learning,” Ieee data eng. bull., vol. 35, iss. 2, pp. 24-32, 2012.
  • Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie, M. Weimer, and R. Ramakrishnan, “Scaling datalog for machine learning on big data,” Corr, vol. abs/1203.0160, 2012.
2011
  • T. Condie, “Declarative systems,” PhD Thesis, 2011.
  • N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie, “Online aggregation for large mapreduce jobs,” Pvldb, vol. 4, iss. 11, pp. 1135-1145, 2011.
  • M. Weimer, T. Condie, and R. Ramakrishnan, “Machine learning in scalops, a higher order cloud computing language,” in Nips 2011 workshop on parallel and large-scale machine learning (biglearn), Sierra Nevada, Spain, 2011.
2010
  • P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and R. Sears, “Boom analytics: exploring data-centric, declarative programming for the cloud,” in Proceedings of the 5th european conference on computer systems, New York, NY, USA, 2010, pp. 223-236.
  • T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy, and R. Sears, “Online aggregation and continuous query support in mapreduce,” in Sigmod conference, 2010, pp. 1115-1118.
  • T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears, “Mapreduce online,” in Proceedings of the 7th usenix conference on networked systems design and implementation, 2010, pp. 21-21.
2009
  • P. Alvaro, T. Condie, N. Conway, J. M. Hellerstein, and R. Sears, “I do declare: consensus in a logic language,” Sigops oper. syst. rev., vol. 43, iss. 4, pp. 25-30, 2009.
  • T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy, and R. Sears, “Online aggregation and continuous query support in mapreduce,” in Sigmod conference, 2010, pp. 1115-1118.
  • B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative networking,” Commun. acm, vol. 52, iss. 11, pp. 87-95, 2009.
2008
  • T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis, “Evita raced: metacompilation for declarative networks,” Proc. vldb endow., vol. 1, iss. 1, pp. 1153-1165, 2008.
2007
  • J. M. Hellerstein, T. Condie, M. N. Garofalakis, B. T. Loo, P. Maniatis, T. Roscoe, and N. Taft, “Public health for the internet (phi),” in Cidr, 2007, pp. 332-340.
2006
  • M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica, “Rofl: routing on flat labels,” in Proceedings of the 2006 conference on applications, technologies, architectures, and protocols for computer communications, New York, NY, USA, 2006, pp. 363-374.
  • B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative networking: language, execution and optimization,” in Proceedings of the 2006 acm sigmod international conference on management of data, New York, NY, USA, 2006, pp. 97-108.
2005
  • T. Condie, J. M. Hellerstein, P. Maniatis, S. Rhea, and T. Roscoe, “A need for componentized transport protocols,” in Proceedings of the twentieth acm symposium on operating systems principles, New York, NY, USA, 2005, pp. 1-10.
  • B. Yang, T. Condie, S. D. Kamvar, and H. Garcia-Molina, “Non-cooperation in competitive p2p networks,” in Icdcs, 2005, pp. 91-100.
  • M. Bawa, T. Condie, and P. Ganesan, “Lsh forest: self-tuning indexes for similarity search,” in Www, 2005, pp. 651-660.
  • B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica, “Implementing declarative overlays,” in Proceedings of the twentieth acm symposium on operating systems principles, New York, NY, USA, 2005, pp. 75-90.
2002
  • T. Condie, S. D. Kamvar, and H. Garcia-Molina, “Adaptive peer-to-peer topologies,” in Peer-to-peer computing, 2004, pp. 53-62.
EDUCATION
PhD (2011) UC Berkeley
AWARDS AND RECOGNITION
Recent research awards and recognitions include:
  • Best of VLDB (2016)
  • Symantec Chair, CS Department, UCLA (2016)
  • IBM Faculty Award (2015)
  • Intel Early Career Faculty Award (2015)
  • Okawa Foundation Research Grant (2015)
  • University of California Faculty Development Award (2015)
  • NSF Career Award (2014)
COURSES
  • Database Systems (CS143)
  • Distributed Database Systems (CS 247)
  • Cloud Computing (CS 249)